Costameres form rib-like bands around the circumference of the muscle fiber.

Extracellular glycoproteins connect the sarcolemma to the extracellular matrix.

Dystrophin connects the sarcolemma to f-actin of the cytoskeleton, which connects to the Z discs.

Connection between Z discs

Myofibril

Transmembrane proteins

Glycogen granules

Sarcoplasmic reticulum

Terminal cisterna

Transverse tubule (T tubule)

Z disk
(a)

Sarcomere

A band

H zone

I band

Thin filament

Thick filament

Z disk

M line

Z disk

I band

H zone

M line

Outer edge of A band

thin filaments only

thick filaments only

thick filaments linked with accessory proteins

thick and thin filaments overlap

Zona control vacuole

43 nm

14.3 nm

120°
Equal and opposite forces by thin filaments; net force = 0
Figure 17.5 Molecular interactions that underlie muscle contraction

The myosin head cross-bridges interact with G-actin monomers to provide the molecular basis of contraction. Each cross-bridge goes through several cycles during a single contraction. Each of the two heads of a myosin molecule has an actin-binding site and an ATP-binding site where ATP is hydrolyzed. The two myosin heads function independently. During contraction, only one head of each pair binds to actin at a time. Structural studies suggest that no more than four myosin heads can attach over a span of seven G-actin monomers. Single-molecule studies suggest that each myosin head displaces the actin filament by about 10 to 12 nm.
1. The action potential in a motor neuron triggers exocytosis of ACh.

2. Ligand-gated channels open, and the net inward movement of Na⁺ initiates an action potential.

3. The action potential propagates over the cell membrane and depolarizes the tubules.

4. Depolarization of the voltage-sensitive DHPR causes a conformational change that opens the RyR calcium channels of the SR.

5. Ca²⁺ ions bind to troponin, and tropomyosin moves to expose myosin-binding sites on actin.

6. Cross-bridges go through several cycles as long as Ca²⁺ remains bound to troponin.
(a) Vertebrate smooth muscle

Phasic contraction

- \(\text{Ca}^{2+} \)
- Cross-bridge phosphorylation
- Force

Stimulation

Tonic contraction

- \(\text{Ca}^{2+} \)
- Latch
- Cross-bridge phosphorylation

Stimulation

Time

(b) Mollusk catch muscle

Acetylcholine

Relaxed

Active state

Catch state

Relaxed

Serotonin

Ca\(^{2+}\)

Force
Striated skeletal muscle motor unit

Striated cardiac muscle syncytium

Smooth muscle syncytium (autonomic innervation)

Single-unit smooth muscle

Multiunit smooth muscle

Postganglionic axon of autonomic nervous system

Varicosity containing vesicles of transmitter Gap junction

Postganglionic axon of autonomic nervous system

Varicosity containing vesicles of transmitter
Table 10-2 Characteristics of the major types of muscle fibers in vertebrates

<table>
<thead>
<tr>
<th>Property/component</th>
<th>Skeletal</th>
<th>Cardiac</th>
<th>Multi-unit</th>
<th>Single-unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visible banding pattern</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Myosin thick filaments and actin thin filaments</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Tropomyosin and troponin</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Transverse tubules</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Sarcoplasmic reticulum</td>
<td>Well developed</td>
<td>Well developed</td>
<td>Very little</td>
<td>Very little</td>
</tr>
<tr>
<td>Mechanism of contraction</td>
<td>Sliding of thick and thin filaments past each other</td>
<td>Sliding of thick and thin filaments past each other</td>
<td>Sliding of thick and thin filaments past each other</td>
<td>Sliding of thick and thin filaments past each other</td>
</tr>
<tr>
<td>Innervation</td>
<td>Somatic nerves</td>
<td>Autonomic nerves</td>
<td>Autonomic nerves</td>
<td>Autonomic nerves</td>
</tr>
</tbody>
</table>

*Neurogenic muscles contract only when stimulated by synaptic input from a neuron. Myogenic muscles endogenously produce depolarizing membrane potentials, allowing them to contract independently of any neuronal input.

†SR, sarcoplasmic reticulum; ECF, extracellular fluid.

Source: Adapted from Sherwood, 2001.
Table 10-1 Properties of twitch (phasic) fibers in mammalian skeletal muscles

<table>
<thead>
<tr>
<th>Property</th>
<th>Slow oxidative (type I)</th>
<th>Fast oxidative (type IIa)</th>
<th>Fast glycolytic (type IIb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiber diameter</td>
<td>↓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Force per cross-sectional area</td>
<td>↓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rate of contraction (V_{max})</td>
<td></td>
<td>←</td>
<td></td>
</tr>
<tr>
<td>Myosin ATPase activity</td>
<td></td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Resistance to fatigue</td>
<td>↑</td>
<td>←</td>
<td>←</td>
</tr>
<tr>
<td>Number of mitochondria</td>
<td>↑</td>
<td></td>
<td>↑</td>
</tr>
<tr>
<td>Capacity for oxidative phosphorylation</td>
<td>↑</td>
<td></td>
<td>↓</td>
</tr>
<tr>
<td>Enzymes for anaerobic glycolysis</td>
<td>↑</td>
<td>←</td>
<td>↑</td>
</tr>
</tbody>
</table>

Source: Adapted from Sherwood, 2001.
Key = Low ← Intermediate ↑ High